Course Description

AP Computer Science A is a full-year course that meets on a rotating basis for three (3) 55-minute blocks and one (1) 40-minute block for every five (5) day cycle.

Computer science embraces problem-solving, hardware, algorithms, and perspectives that help people utilize computers to solve real-world problems in everyday life. The AP Computer Science A course introduces students to computer science with fundamental topics that include problem-solving, design strategies and methodologies, organization of data, approaches to processing data, analysis of potential solutions, and the ethical and social implications of computing. The course emphasizes both object-oriented and imperative problem-solving and design. These techniques represent proven approaches for developing solutions that can scale up from small, simple problems to large, complex problems. Students will be programming in the language of Java. The course content follows the College Board's Advanced Placement curriculum for the AP test in Computer Science A.

Course Overview and Pacing Guide

Unit	Торіс	Time Frame
1	Primitive Types	2 Weeks
2	Using Objects	4 Weeks
3	Boolean Expressions and if Statements	3 Weeks
4	Iteration	3 Weeks
5	Writing Classes	4 Weeks
6	Array	3 Weeks
7	ArrayList	3 Weeks
8	2D Array	2 Weeks
9	Inheritance	3 Weeks
10	Recursion	3 Weeks
11	AP Exam Prep	3 Weeks
12	String Manipulations	2 Weeks
13	Design and Object Oriented Principles	3 Weeks

Computer Science and Design Thinking (Standard 8)			
Core Idea	Performance Expectation		
The usability, dependability, security, and accessibility of devices within integrated systems are important considerations in their design as they evolve.	8.1.12.CS.1: Describe ways in which integrated systems hide underlying implementation details to simplify user experiences.		
	8.1.12.CS.4: Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.		
The scalability and reliability of the Internet are enabled by the hierarchy and redundancy in networks. Network topology is determined by many characteristics.	8.1.12.NI.1: Evaluate the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.		
	8.1.12.AP.1: Design algorithms to solve computational problems using a combination of original and existing algorithms.		
Programmers choose data structures to manage program complexity based on functionality, storage, and performance trade-offs.	8.1.12.AP.2: Create generalized computational solutions using collections instead of repeatedly using simple variables.		
program performance are considered when selecting	8.1.12.AP.3: Select and combine control structures for a specific application based upon performance and readability, and identify trade-offs to justify the choice. 8.1.12.AP.4: Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue.		
	8.1.12.AP.5: Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects. 8.1.12.AP.6: Create artifacts by using procedures within a program, combinations of data, and procedures.		
strengths using a variety of resources and tools.	8.1.12.AP.7: Collaboratively design and develop programs and artifacts for broad audiences by incorporating feedback from users. 8.1.12.AP.8: Evaluate and refine computational artifacts to make them more usable and accessible. 8.1.12.AP.9: Collaboratively document and present design decisions in the development of complex programs.		
Career Readiness, Life Literacies, and Key Skills (Standard 9)			
Core Idea	Performance Expectation		
There are strategies to improve one's professional value and marketability.	9.2.12.CAP.3: Investigate how continuing education contributes to one's career and personal growth.		
Career planning requires purposeful planning based on	9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on		

research, self-knowledge, and informed choices.	those skills.	
With a growth mindset, failure is an important part of success.	9.4.12.Cl.1: Demonstrate the ability to reflect, analyze, and use creative skills and ideas	
·	9.4.12.CT.1: Identify problem-solving strategies used in the development of an innovative product or practice	
privacy, data, property, information, and identity. These laws can have beneficial and harmful effects, such as	9.4.12.DC.3: Evaluate the social and economic implications of privacy in the context of safety, law, or ethics 9.4.12.DC.4: Explain the privacy concerns related to the collection of data (e.g., cookies) and generation of data through automated processes that may not be evident to users.	
	9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions. 9.4.12.IML.4: Assess and critique the appropriateness and impact of existing data visualizations for an intended audience.	
record, and share different viewpoints and to collect	9.4.12.TL.3: Analyze the effectiveness of the process and quality of collaborative environments. 9.4.12.TL.4: Collaborate in online learning communities or social networks or virtual worlds to analyze and propose a resolution to a real-world problem.	
Interdisciplinary Connections		
MA.K-12.1-8: Integrate mathematical skills using variables, structure, and reasoning to create computer programs.		

Modifications, Accommodations, and Differentiation					
English Language Learners IEP / 504 At Risk Students Gifted and Talented					
Scaffolding	Word walls	Teacher tutoring	Challenge assignments		
Word walls	Visual aides	Peer tutoring	Enrichment activities		
Sentence/paragraph frames	Graphic organizers	Study guides	Independent research/inquiry		
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Collaborative teamwork		
Think alouds	Leveled readers	Extended time	Higher level questioning		
Read alouds	Assistive technology	Parent communication	Critical/Analytical thinking tasks		
Highlight key vocabulary	Notes/summaries	Modified assignments	Self-directed activities		
Annotation guides	Extended time	Counseling	Open forums and debates in the classroom		
Think-pair- share	Answer masking	Verbal reminders	regarding controversial issues		
Visual aides	Answer eliminator	Check student independent work			
Modeling	Highlighter	Assist student with planning of			
In-Class-Support	Color contrast	assignments			
Graphic Organizers	In-Class-Support	Provide student with clear expectations			
Note-taking guides	Provide Study Guides	and grading criteria			
Clarify assignments, directions and	Establish Timelines	Restate and clarify directions and questions			
instructions	Clarify Assignments, directions and				
Extended time	instructions				
Collaboration between ESL and mainstream	Parent/teacher communication				
classroom teachers	Assist students with steps to complete				
	assignments				
	Provide student with clear expectations				
	and grading criteria				
	Establish procedures for accommodations				
	/modifications for assessments				

Unit Name	Unit 1 - Primitive Types	Time Frame - 2 Weeks
	Project Stem AP CSA Platform, AP Classroom (colleg- (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research a	

Disciplinary Concept: Primitive Types

This unit introduces students to the basics of programming in Java, focusing on the use of variables and operators for storing and manipulating primitive data.

Core Idea	Performance Expectation (Standard)
Individuals evaluate and select algorithms based on performance, reusability, and ease of implementation	8.1.12.AP.1: Design algorithms to solve computational problems using a combination of original and existing algorithms
Programmers choose data structures to manage program complexity based on functionality, storage, and performance trade-offs	8.1.12.AP.2: Create generalized computational solutions using collections instead of repeatedly using simple variables
Trade-offs related to implementation, readability, and program performance are considered when selecting and combining control structures	8.1.12.AP.3: Select and combine control structures for a specific application based upon performance and readability, and identify trade-offs to justify the choice
There are strategies to improve one's professional value and marketability	9.2.12.CAP.3: Investigate how continuing education contributes to one's career and personal growth.

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Complete a partial line of code	Lesson 1 - Output In Java	Classroom Assignments and Activities, Programming Labs, Unit 1 Quiz, Unit 1 Test, Movie Ratings Project
Determine the results of printing an expression concatenating two strings	Lesson 2 - User Input and Variables	Classroom Assignments and Activities, Programming Labs, Unit 1 Quiz, Unit 1 Test, Movie Ratings Project
Describe different primitive data types that can be used to store numbers in Java	Lesson 3 - Data Types	Classroom Assignments and Activities, Programming Labs, Unit 1 Quiz, Unit 1 Test, Movie Ratings Project
Perform number calculations in Java	Lesson 4 - Number Calculations Lesson 5 - Modular Division	Classroom Assignments and Activities, Programming Labs, Unit 1 Quiz, Unit 1 Test, Movie Ratings Project

Understand casting and how to convert one data	Lesson 6 - Numeric Casts	Classroom Assignments and Activities, Programming
type to another		Labs, Unit 1 Quiz, Unit 1 Test, Movie Ratings Project

Unit Name	Unit 2 - Using Objects	Time Frame - 4 Weeks
	Project Stem AP CSA Platform, AP Classroom (college (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research, a	

Disciplinary Concept: Using Objects		
This unit introduces the use of classes, methods, and objects.		
Core Idea Performance Expectation (Standard)		
Programmers choose data structures to manage program complexity based on functionality, storage, and performance trade-offs	8.1.12.AP.2: Create generalized computational solutions using collections instead of repeatedly using simple variables	
Trade-offs related to implementation, readability, and program performance are considered when selecting and combining control structures	8.1.12.AP.3: Select and combine control structures for a specific application based upon performance and readability, and identify trade-offs to justify the choice	
Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose.	8.1.12.AP.5: Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects.	
Career planning requires purposeful planning based on research, self-knowledge, and informed choices.	9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.	

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Understand how data is stored in memory and concatenating string variables with primitives	Lesson 1 - Strings and Class Types Lesson 2 - Escape Char and String Concatenation	Classroom Assignments and Activities, Programming Labs, Unit 2 Quiz, Unit 2 Test, Control Tower Project
Understand methods which can be called on objects of the string data type and the class-object structure in Java	Lesson 3 - String Functions Lesson 4 - Classes and Objects	Classroom Assignments and Activities, Programming Labs, Unit 2 Quiz, Unit 2 Test, Control Tower Project
Use constructors for creating objects of class types intriduced	Lesson 5 - Using Constructors	Classroom Assignments and Activities, Programming Labs, Unit 2 Quiz, Unit 2 Test, Control Tower Project
Write code which creates objects, then call methods to both determine and change the state of the object	Lesson 6 - Using Methods Lesson 7 - Wrapper Classes Lesson 8 - Math Functions	Classroom Assignments and Activities, Programming Labs, Unit 2 Quiz, Unit 2 Test, Control Tower Project

Unit Name	Unit 3 - Boolean Expressions and If Statements	Time Frame - 3 Weeks
	Project Stem AP CSA Platform, AP Classroom (colleg- (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research, a	

Disciplinary Concept: Boolean Expressions and If Statements		
This unit introduces the concepts that programs use to make decisions using the logic of Boolean expressions, If and Else statements.		
Core Idea Performance Expectation (Standard)		
Individuals evaluate and select algorithms based on performance, reusability, and ease of implementation. 8.1.12.AP.1: Design algorithms to solve computational problems using a combination of original and existing algorithms		
Complex programs are developed, tested, and analyzed by teams drawing on the members' diverse strengths using a variety of resources and tools.	8.1.12.AP.8: Evaluate and refine computational artifacts to make them more usable and accessible.	
Digital tools such as artificial intelligence, image enhancement and analysis, and sophisticated computer modeling and simulation create new types of information that may have profound effects on society. 9.4.12.IML.3: Analyze data using tools and models to make valid and relationst claims, or to determine optimal design solutions.		
Collaborative digital tools can be used to access, record, and share different viewpoints and to collect and tabulate the views of groups of people. 9.4.12.TL.3: Analyze the effectiveness of the process and quality of collaborative environments.		

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Use conditional logic in a program with comparison operators	Lesson 1 - Simple Ifs Lesson 2 - Ifs - Making Decisions	Classroom Assignments and Activities, Programming Labs, Unit 3 Quiz, Unit 3 Test, Crack The Code Project
Understand how else statements give greater control over programs	Lesson 3 – Else	Classroom Assignments and Activities, Programming Labs, Unit 3 Quiz, Unit 3 Test, Crack The Code Project
Understand how short-circuit evaluation is used by Java when evaluating Boolean statements	Lesson 4 - Booleans and Truth Tables Lesson 5 - Short Circuit Evaluation	Classroom Assignments and Activities, Programming Labs, Unit 3 Quiz, Unit 3 Test, Crack The Code Project
Learn how to apply De Morgan's law to find equivalent Boolean statements	Lesson 6 - De Morgan's Law	Classroom Assignments and Activities, Programming Labs, Unit 3 Quiz, Unit 3 Test, Crack The Code Project
Compare object data in Java using both the '=='	Lesson 7 - Comparing Objects	Classroom Assignments and Activities, Programming

operator and the equals method	Labs. Unit 3 Quiz. Unit 3 Test. Crack The Code Proiect
laboration and advantage	

Unit Name	Unit 4 - Iteration	Time Frame - 3 Weeks
	Project Stem AP CSA Platform, AP Classroom (colleg (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research,	

Disciplinary Concept: Iteration

This unit introduces the idea of iteration, repeating a process until certain conditions are met. This unit focuses on while and for loops to create algorithms for Strings and numbers. Unit 4 also contains the first College Board lab assignment.

Core Idea	Performance Expectation (Standard)
The usability, dependability, security, and accessibility of devices within integrated systems are important considerations in their design as they evolve.	8.1.12.CS.1: Describe ways in which integrated systems hide underlying implementation details to simplify user experiences.
Programmers choose data structures to manage program complexity based on functionality, storage, and performance trade-offs.	8.1.12.AP.2: Create generalized computational solutions using collections instead of repeatedly using simple variables.
Trade-offs related to implementation, readability, and program performance are considered when selecting and combining control structures.	8.1.12.AP.4: Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue.
Collaborative digital tools can be used to access, record, and share different viewpoints and to collect and tabulate the views of groups of people.	9.4.12.TL.4: Collaborate in online learning communities or social networks or virtual worlds to analyze and propose a resolution to a real-world problem.

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Use while loops to repeat program code and predict output using a trace table	Lesson 1 - While Loops Lesson 1 1/2 - Tracing Code	Classroom Assignments and Activities, Programming Labs, Unit 4 Quiz, Unit 4 Test, String Project
Use both selection and iteration to produce a desired output when the main method of a program executes	Lesson 2 - Algorithms for Numbers Lesson 3 - The For Loop	Classroom Assignments and Activities, Programming Labs, Unit 4 Quiz, Unit 4 Test, String Project
Determine the results of running a code segment with nested iteration statements	Lesson 4 - Algorithms for Strings	Classroom Assignments and Activities, Programming Labs, Unit 4 Quiz, Unit 4 Test, String Project
Write nested iteration statements to produce a desired output	Lesson 5 - Nested Loops Lesson 6 - Algorithm Efficiency:	Classroom Assignments and Activities, Programming Labs, Unit 4 Quiz, Unit 4 Test, String Project

Unit Name	Unit 5 - Writing Classes	Time Frame - 4 Weeks
	Project Stem AP CSA Platform, AP Classroom (colleg- (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research, a	

Disciplinary Concept: Writing Classes

This unit introduces the concepts required for students to write their own classes, which will form the basis for creating more sophisticated programs later in the course. This unit also contains the first of two lessons examining the wider impacts of computer science on society and culture.

Core Idea	Performance Expectation (Standard)
	8.1.12.AP.5: Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects. 8.1.12.AP.6: Create artifacts by using procedures within a program, combinations of data, and procedures.
Laws govern many aspects of computing, such as privacy, data, property, information, and identity. These laws can have beneficial and harmful effects, such as expediting or delaying advancements in computing and protecting or infringing upon people's rights.	9.4.12.DC.3: Evaluate the social and economic implications of privacy in the context of safety, law, or ethics 9.4.12.DC.4: Explain the privacy concerns related to the collection of data (e.g., cookies) and generation of data through automated processes that may not be evident to users.

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Write methods that use parameters to send information with a method call	Lesson 1 - Void methods Lesson 2 - Parameters Lesson 3 Parameters	Classroom Assignments and Activities, Programming Labs, Unit 5 Quiz, Unit 5 Test, Fraction Project
Use return statements to allow methods to send information back when they are called	Lesson 4 - Return Methods	Classroom Assignments and Activities, Programming Labs, Unit 5 Quiz, Unit 5 Test, Fraction Project
Create a custom class, which is used to create objects representing vehicles	Lesson 5 - Classes Lesson 6 - Constructors Lesson 7 - Documenting a Class	Classroom Assignments and Activities, Programming Labs, Unit 5 Quiz, Unit 5 Test, Fraction Project
Write a method using iteration and selection which returns values according to a specification	Lesson 8 - Static Vs. Instance Lesson 9 - Wider Impacts of Computing	Classroom Assignments and Activities, Programming Labs, Unit 5 Quiz, Unit 5 Test, Fraction Project

Unit Name	Unit 6 - Array	Time Frame - 3 Weeks
	Project Stem AP CSA Platform, AP Classroom (colleg- (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research, a	

Disciplinary Concept: Array

This unit introduces the array data structure which can be used to hold multiple primitive values or object references. Students will learn how to write code which traverses an array to search for or manipulate data in the array.

Core Idea	Performance Expectation (Standard)
Programmers choose data structures to manage program complexity based on functionality, storage, and performance trade-offs.	8.1.12.AP.2: Create generalized computational solutions using collections instead of repeatedly using simple variables.
Complex programs are developed, tested, and analyzed by teams drawing on the members' diverse strengths using a variety of resources and tools.	8.1.12.AP.7: Collaboratively design and develop programs and artifacts for broad audiences by incorporating feedback from users.
Digital tools such as artificial intelligence, image enhancement and analysis, and sophisticated computer modeling and simulation create new types of information that may have profound effects on society. These new types of information must be evaluated carefully.	9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions. 9.4.12.IML.4: Assess and critique the appropriateness and impact of existing data visualizations for an intended audience.

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Determine the results of executing a block of code with multiple operators working on array elements	Lesson 1 - One-Dimensional Arrays Lesson 2 - Algorithms – Searching	Classroom Assignments and Activities, Programming Labs, Unit 6 Quiz, Unit 6 Test, Array Statistics Project
Write code which traverses an array and returns information about its contents	Lesson 3 - Arrays of Strings	Classroom Assignments and Activities, Programming Labs, Unit 6 Quiz, Unit 6 Test, Array Statistics Project
Determine the output of a code segment with multiple method calls	Lesson 4 - Algorithms on Arrays	Classroom Assignments and Activities, Programming Labs, Unit 6 Quiz, Unit 6 Test, Array Statistics Project
Write a method which traverses an array and changes the value of its elements by inserting an element	Lesson 5 - The For-Each Loop	Classroom Assignments and Activities, Programming Labs, Unit 6 Quiz, Unit 6 Test, Array Statistics Project

Unit Name	Unit 7 - ArrayList	Time Frame - 3 Weeks
	Project Stem AP CSA Platform, AP Classroom (colleg- (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research, a	

Disciplinary Concept: ArrayList

This unit introduces the concept of ArrayLists, along with some common search and sort algorithms. This unit also contains the second lesson examining the wider impacts of computer science, with an emphasis on data collection.

Core Idea	Performance Expectation (Standard)
Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Modules allow for better management of tasks.	8.1.12.AP.5: Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects.
Complex programs are developed, tested, and analyzed by teams drawing on the members' diverse strengths using a variety of resources and tools.	8.1.12.AP.9: Collaboratively document and present design decisions in the development of complex programs
Digital tools such as artificial intelligence, image enhancement and analysis, and sophisticated computer modeling and simulation create new types of information that may have profound effects on society. These new types of information must be evaluated carefully.	9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions. 9.4.12.IML.4: Assess and critique the appropriateness and impact of existing data visualizations for an intended audience.

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Write code which creates and then manipulates the contents of an ArrayList	Lesson 1 - ArrayList Lesson 2 - Traversing ArrayLists	Classroom Assignments and Activities, Programming Labs, Unit 7 Quiz, Unit 7 Test, Game Wheel Project
Determine the output of a code segment which makes multiple calls to ArrayList and String methods	Lesson 3 - Array Algorithms with ArrayLists	Classroom Assignments and Activities, Programming Labs, Unit 7 Quiz, Unit 7 Test, Game Wheel Project
Create a method which implements a selection sort algorithm: manipulating an ArrayList by changing the order of its values	Lesson 4 - Linear Search Lesson 5 - Selection Sort Lesson 6 - Insertion Sort	Classroom Assignments and Activities, Programming Labs, Unit 7 Quiz, Unit 7 Test, Game Wheel Project
Explore the risks to privacy of storing personal data using computer systems	Lesson 7 - Wider Impacts of Data Collection	Classroom Assignments and Activities, Programming Labs, Unit 7 Quiz, Unit 7 Test, Game Wheel Project

Unit Name	Unit 8 - 2-D Arrays	Time Frame - 2 Weeks
	Project Stem AP CSA Platform, AP Classroom (college (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research, a	

Disciplinary Concept: 2-D Arrays		
This unit introduces the concept of 2-D arrays, along with some algorithms that can be used in conjunction with 2-D arrays.		
Core Idea Performance Expectation (Standard)		
Programmers choose data structures to manage program complexity based on functionality, storage, and performance trade-offs.	8.1.12.AP.2: Create generalized computational solutions using collections instead of repeatedly using simple variables.	
Complex programs are developed, tested, and analyzed by teams drawing on the members' diverse strengths using a variety of resources and tools.	8.1.12.AP.8: Evaluate and refine computational artifacts to make them more usable and accessible.	
Digital tools such as artificial intelligence, image enhancement and analysis, and sophisticated computer modeling and simulation create new types of information that may have profound effects on society. These new types of information must be evaluated carefully.	9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions. 9.4.12.IML.4: Assess and critique the appropriateness and impact of existing data visualizations for an intended audience.	

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Complete a partially completed code segment by determining the correct condition to use	Lesson 1 - 2-D Arrays	Classroom Assignments and Activities, Programming Labs, Unit 8 Quiz, Unit 8 Test, Battleship Project
Write a method which is used to create a 2-D array and traverse it to edit the values stored to desired results	Lesson 2 - 2-D Array Algorithms	Classroom Assignments and Activities, Programming Labs, Unit 8 Quiz, Unit 8 Test, Battleship Project
Trace code which traverses a 2-D array and determine what output is when the code is executed	Lesson 2 - 2-D Array Algorithms	Classroom Assignments and Activities, Programming Labs, Unit 8 Quiz, Unit 8 Test, Battleship Project
Write methods which traverse a 2-D array, representing a board in a battleship game.	Battleship Project	Classroom Assignments and Activities, Programming Labs, Unit 8 Quiz, Unit 8 Test, Battleship Project

Unit Name	Unit 9 - Inheritance	Time Frame - 3 Weeks
	Project Stem AP CSA Platform, AP Classroom (colleg- (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research, a	

Disciplinary Concept: Inheritance

This unit introduces the concept of inheritance, the ability to have functionality extend from one class to another. The relationships this process creates are examined through the use of class hierarchy diagrams and examples where objects are declared and initialized as different types.

Core Idea	Performance Expectation (Standard)
Trade-offs related to implementation, readability, and program performance are considered when selecting and combining control structures	8.1.12.AP.3: Select and combine control structures for a specific application based upon performance and readability, and identify trade-offs to justify the choice
Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose.	8.1.12.AP.5: Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects.
Digital tools such as artificial intelligence, image enhancement and analysis, and sophisticated computer modeling and simulation create new types of information that may have profound effects on society.	9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions.
With a growth mindset, failure is an important part of success.	9.4.12.Cl.1: Demonstrate the ability to reflect, analyze, and use creative skills and ideas

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Create a new class	Lesson 1 - Inheritance	Classroom Assignments and Activities, Programming Labs, Unit 9 Quiz, Unit 9 Test, Frisbee Project
Write their code so it interacts with existing code by extending a class for which they are given the source code	Lesson 2 - Inheritance Overriding Methods	Classroom Assignments and Activities, Programming Labs, Unit 9 Quiz, Unit 9 Test, Frisbee Project
Override a method according to specifications by calling a method from the superclass	Lesson 2 - Inheritance Overriding Methods	Classroom Assignments and Activities, Programming Labs, Unit 9 Quiz, Unit 9 Test, Frisbee Project
Make decisions about how to design a class	Lesson 3 - Is-a and Has-a Relationships	Classroom Assignments and Activities, Programming

hierarchy for a program		Labs, Unit 9 Quiz, Unit 9 Test, Frisbee Project
Unit Name	Unit 10 - Recursion	Time Frame - 3 Weeks
	Project Stem AP CSA Platform, AP Classroom (colleg- (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research, a	

This unit introduces the concept of recursion – defining a process in terms of itself. In practice, this means writing methods that contain calls to
themselves to solve a problem.

Disciplinary Concept: Recursion

Core Idea	Performance Expectation (Standard)
Successful troubleshooting of complex problems involves multiple approaches including research, analysis, reflection, interaction with peers, and drawing on past experiences.	8.1.12.CS.4: Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.
Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose.	8.1.12.AP.5: Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects.
Trade-offs related to implementation, readability, and program performance are considered when selecting and combining control structures.	8.1.12.AP.4: Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue.
Collaboration with individuals with diverse experiences can aid in the problem-solving process, particularly for global issues where diverse solutions are needed.	9.4.12.CT.1: Identify problem-solving strategies used in the development of an innovative product or practice

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Determine the output when a recursive method is called	Lesson 1 - Intro to Recursion	Classroom Assignments and Activities, Programming Labs, Unit 10 Quiz, Unit 10 Test, Anagrams Project
Determine how many times a line of code is executed in a certain method call	Lesson 2 - Recursive Functions with Returns	Classroom Assignments and Activities, Programming Labs, Unit 10 Quiz, Unit 10 Test, Anagrams Project
Write a recursive method according to a given specification	Lesson 3 - Binary Search	Classroom Assignments and Activities, Programming Labs, Unit 10 Quiz, Unit 10 Test, Anagrams Project
Test methods with a variety of test cases	Lesson 4 - Merge Sort	Classroom Assignments and Activities, Programming

	Labs, Unit 10 Quiz, Unit 10 Test, Anagrams Project
--	--

Unit Name	Unit 11 - AP Exam Prep	Time Frame - 3 Weeks
	Project Stem AP CSA Platform, AP Classroom (college (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research, a	

Disciplinary Concept: AP Exam Prep

The goal of the unit is to allow students to synthesize the material covered throughout the year and review any areas that could use strengthening.

Core Idea	Performance Expectation (Standard)
The scalability and reliability of the Internet are enabled by the hierarchy and redundancy in networks. Network topology is determined by many characteristics.	8.1.12.NI.1: Evaluate the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Individuals evaluate and select algorithms based on performance, reusability, and ease of implementation.	8.1.12.AP.1: Design algorithms to solve computational problems using a combination of original and existing algorithms.
Programmers choose data structures to manage program complexity based on functionality, storage, and performance trade-offs.	8.1.12.AP.2: Create generalized computational solutions using collections instead of repeatedly using simple variables.
Trade-offs related to implementation, readability, and program performance are considered when selecting and combining control structures.	8.1.12.AP.3: Select and combine control structures for a specific application based upon performance and readability, and identify trade-offs to justify the choice. 8.1.12.AP.4: Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue.

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
Review Programming Fundamentals, Data Structures, Logic, Algorithms, Object-Oriented Programming, Recursion, and Software Engineering	Released AP Exam Free-Response Questions	Diagnostic Exam Released AP Exam Free-Response Questions AP Classroom Review

Unit Name	Unit 12 - String Manipulations	Time Frame - 2 Weeks
	Project Stem AP CSA Platform, AP Classroom (colleg (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research,	

Disciplinary Concept: String Manipulations		
The goal of the unit is to implement a chatbot and incorporates string manipulations.		
Core Idea Performance Expectation (Standard)		
Programmers choose data structures to manage program complexity based on functionality, storage, and performance trade-offs	8.1.12.AP.2: Create generalized computational solutions using collections instead of repeatedly using simple variables	
Trade-offs related to implementation, readability, and program performance are considered when selecting and combining control structures 8.1.12.AP.3: Select and combine control structures based upon performance and readability, and identify trade-offs to choice		
Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose.	8.1.12.AP.5: Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects.	
Career planning requires purposeful planning based on research, self-knowledge, and informed choices.	9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.	

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
	, , ,	Classroom Assignments and Activities, Programming Labs, Magpie Lab
		Classroom Assignments and Activities, Programming Labs, Magpie Lab

Activity 3: Modify the Magpie classes by working with String methods	
Activity 4: Make the ChatBot more responsive by changing what the user types in Activity 5: Use arrays in the ChatBot for processing	Classroom Assignments and Activities, Programming Labs, Magpie Lab

Unit Name	Unit 13 - Design and Object Oriented Principles	Time Frame - 3 Weeks
	Project Stem AP CSA Platform, AP Classroom (college (on-line textbook), Replit.com (online IDE), Chromebo Exercises, Software Applications, Internet Research, a	

Disciplinary Concept: Design and Object Oriented Principles			
The goal of the unit is to apply design and object oriented principles to create and play a solitaire game.			
Core Idea Performance Expectation (Standard)			
Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose.	8.1.12.AP.5: Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects.		
Complex programs are developed, tested, and analyzed by teams drawing on the members' diverse strengths using a variety of resources and tools.	8.1.12.AP.9: Collaboratively document and present design decisions in the development of complex programs		
Digital tools such as artificial intelligence, image enhancement and analysis, and sophisticated computer modeling and simulation create new types of information that may have profound effects on society. 9.4.12.IML.3: Analyze data using tools and models to make valid and reclaims, or to determine optimal design solutions.			
With a growth mindset, failure is an important part of success. 9.4.12.Cl.1: Demonstrate the ability to reflect, analyze, and use creative skills ideas			

Student Learning Objectives (Knowledge and Skills)	Suggested Tasks/Activities	Evidence of Learning (Assessments)
		Classroom Assignments and Activities, Programming Labs, Elevens Lab
Design and implement the Card and Deck	Activity Four: Add a Shuffle method to the Deck class.	Classroom Assignments and Activities, Programming

classes	Activity Five: Testing with Assertions Activity Six: How to play Elevens. Activity Seven: Designing the ElevensBoard class	Labs, Elevens Lab
Explore how inheritance can be used to reuse the code that is common to all games without rewriting it	, , ,	Classroom Assignments and Activities, Programming Labs, Elevens Lab